
94 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Programmatically Identifying Cognitive Biases
Present in Software Development

Amanda E. Kraft‡†, Matthew Widjaja‡†∗, Trevor M. Sands‡, Brad J. Galego‡

F

Abstract—Mitigating bias in AI-enabled systems is a topic of great concern
within the research community. While efforts are underway to increase model
interpretability and de-bias datasets, little attention has been given to identifying
biases that are introduced by developers as part of the software engineering
process. To address this, we began developing an approach to identify a subset
of cognitive biases that may be present in development artifacts: anchoring bias,
availability bias, confirmation bias, and hyperbolic discounting. We developed
multiple natural language processing (NLP) models to identify and classify the
presence of bias in text originating from software development artifacts.

Index Terms—cognitive bias, software engineering, natural language process-
ing

Introduction

Artificial intelligence (AI) and machine learning (ML) -based
systems are increasingly supporting decision-making, reasoning,
and evaluation of dynamic environments in objective manners.
As AI-enabled systems are finding increasing use across domains
and industries, there is concern that the objectivity of such sys-
tems may be negatively impacted by biases introduced by the
developers either in the design of the system or in the training
data itself. While efforts are underway to make AI/ML systems
more interpretable and debias datasets, little research is directed
at human-centric cognitive biases that developers unintentionally
introduce as a part of the software engineering (SE) process. As
a result, ensuring unbiased and transparent algorithmic decision-
making is a complex challenge and has wide-ranging implications
for the future use of AI in society.

Cognitive biases are systematic deviations from rationality in
judgment, reasoning, evaluation, or other cognitive processes. For
the myriad of cognitive biases described in literature1, approxi-
mately 40 have been investigated in the SE domain2. We selected
four of the most commonly reported cognitive biases in software
engineering:

• Anchoring Bias: Tendency to rely too heavily on pre-
existing or first information found when making a quanti-
tative judgment2.

† These authors contributed equally.
‡ Lockheed Martin Advanced Technology Laboratories
* Corresponding author: matthew.widjaja@lmco.com

Copyright © 2021 Amanda E. Kraft et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

• Availability Bias: Tendency to overestimate the likelihood
of events based on the ease of which examples come to
mind3.

• Confirmation Bias: Tendency to search for and focus
on information that confirms one’s preconception(s) while
ignoring or rejecting sources that challenge it4.

• Hyperbolic Discounting: Tendency to prefer immediate
payoffs over larger rewards at a later point2.

These biases may be influenced by self-generated factors (e.g.,
past development experience), or externally generated factors
(e.g., system documentation)5. A tool to detect biases in software
must be capable of assessing multiple sources of information about
the system, including commit messages, comments, in-source
docstrings, external technical documentation, and diagrams. This
study takes the first steps toward this objective by identifying
cognitive biases in software commit messages and comments from
previously completed projects.

The remainder of this paper is organized into three sections:
research methods, results and discussion, and conclusions and
implications for future work in this space.

Research Methods

In this section we discuss how data was initially gathered and
curated prior to annotation, how manual annotation was performed
using Prodigy, the process for reviewing and finalizing the con-
sensus for data labels, and finally, the approach for developing
machine learning classifier models applied to the annotated data
to determine whether bias is present in a given sample.

Data Curation

To address the lack of research identifying cognitive biases in
software artifacts developed as part of a naturally occurring
development process, we collated data from two internally de-
veloped codebases. The first project (“Project A”) was selected
to represent the whole software engineering process for AI/ML-
enabled systems (i.e., data management to feature extraction to
model training and evaluation). The second project (“Project B”)
is similar in structure to the first, but the software artifacts gathered
include only the latter half of the development cycle (i.e., feature
extraction to model training and evaluation). The content from
both codebases were collated into datasets based on the source
of the development artifacts: commit messages, in-source code
comments, and documentation strings (docstrings). Given the time
limitations for this effort, we prioritized annotation of commit

mailto:matthew.widjaja@lmco.com


PROGRAMMATICALLY IDENTIFYING COGNITIVE BIASES PRESENT IN SOFTWARE DEVELOPMENT 95

Fig. 1: Example view of a comment in reviewer mode. The reviewer
has three options: (1) accept via the green checkmark if bias is
detected, (2) reject via the red X if no bias detected, and (3) ignore
via the grey stop icon if the entry contains no intelligible content.

messages for all datasets, while comments and docstrings were
annotated for the second of the two internal projects.

Further, we identified an open-source dataset, Code Smell6, to
validate models trained on the content from the internal projects.
This dataset contains commit messages extracted from refactoring
activities across the software lifecycle for various open-source
projects.

For all datasets, python scripts were developed to program-
matically extract and format the text content from the artifacts.
Specifically, the following operations were performed: commit
message content had whitespace trimmed and artifact identifiers
removed; comments spanning multiple lines were combined into
a single entry; executable segments of code were removed; entries
with non-ASCII characters were removed; references to individ-
ual names, collaboration teams, applications, and projects were
redacted and replaced with an identifier string (e.g., “NAME1”).

Bias Annotation: Prodigy Setup

The processed text data was then annotated in Prodigy to produce
a structured JSON document. Prodigy is a commercially licensed
software tool for collaborative data annotation. A custom anno-
tation recipe was developed to define the four biases described
above as the possible labels; an additional label option, “Subjec-
tive/Other” was included to provide reviewers a chance to flag
entries containing a form of bias other than the available options.
Figure 1 provides an example of what individual reviewers see
when annotating a given dataset using this custom recipe. For
each entry, the reviewer must decide whether an entry is valid,
and if so, if the language indicates that the author may have
introduced bias into the system. When reviewers determined an
entry contains bias, they selected one or more labels and pressed
“accept”; otherwise, the reviewer pressed “reject” to indicate no
language indicating bias was present.

Bias Annotation: Manual Annotation

A total of six reviewers were engaged in this project for the
bias annotation process. All reviewers have at least two years of
programming experience and are between the ages of 18-40. Two
reviewers are female and four are male. Two reviewers are Asian,
while the other four are White. Three of the six reviewers had
some degree of involvement in developing the software for two
of the internal projects discussed in this paper. Further, one of
these reviewers was the software lead on Project B. To minimize
personal biases when reviewing the development artifacts, all
entries are anonymized and annotated in non-chronological order.

An annotation guide for classifying open-ended text entries
was developed for reviewers to remain consistent. The guide
provides examples of several biased commit messages such as:

• Anchoring Bias

– "Extended module to allow a more traditional ap-
proach to interface engineering"

– "Applying back-changes from my original fix
patch"

– "Correct the temperature unit - assumes anything
under 45 is C"

• Availability Heuristic

– "Renamed method to more sensible wording”
– "Tighter coupling of variable names with other

modules"

• Confirmation Bias

– "The use of [X] rather than [Y] allows each module
to reuse the same functionality without having to
extend a base class"

– "We’re now a bit smarter about the size of tables
that we create by default, which was the root of the
prior problems"

• Hyperbolic Discounting

– "Throwing out the Key and Value classes for now
to reduce the overall complexity"

– "Modified function to account for type errors. Will
likely have to recreate the db every time, unless
other solutions come up"

– "Module incorporated but fails"
– "Quick and dirty method to add features"

• Subjective/Other

– "I was too over-zealous with removing a module"
– "Duplicate code is my nemesis..."

The guide reminds reviewers that they are to label if the
language indicates the author may have introduced bias into the
system, not if the language indicates the author may be addressing
bias previously introduced. The guide further advises the reviewer
to flag entries as invalid if they should be excluded from the
training or testing datasets; the exclusion criteria include blank
messages, machine-generated messages (e.g., automated branch
merging messages), messages only containing an artifact or issue
identifier, and “TODO” or “FIXME” comments with no accom-
panying description. Reviewers were also encouraged to accept
samples that may be borderline cases, as a group consensus would
decide final classification labels.



96 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Bias Annotation: Finalizing Bias Labels

After all reviewers submitted their final annotations for a dataset,
one reviewer was selected to finalize the labels to be used for
training and testing models. For consistency, the same reviewer
was selected to finalize labels on all datasets. The review process
itself was facilitated by Prodigy, which offers a built-in review
recipe, allowing a user to specify the annotation databases to use.
With this recipe, Prodigy extracts all instances where an entry was
marked as “accepted” or “ignored” by at least one reviewer. These
are compiled and displayed similar to the initial review, noting
which review session(s) indicated which label(s).

In the final review, a “best fit” label was selected, rather than
accepting multiple labels for a single entry as allowed in the initial
review stage. This decision was implemented in order to provide
non-overlapping classification boundaries for model training and
testing. The final reviewer followed a set of guidelines for de-
termining best fit labels, such as cross-referencing the annotation
guide or identifying the word or phrase that may have triggered
the response when multiple reviewers selected different biases for
a single message.

If the final reviewer thought the best fit label was ambiguous
or if the label selected was only reported by themselves during
the initial review process, the message was logged for additional
review. These flagged messages were compiled in an Excel work-
book along with the selected answer (first-degree label), the next
best answer (second-degree label), and the labels marked by the
initial review sessions. The workbook was sent to at least two
individuals to respond to these entries, indicating their judgement
of whether the first or second degree label was the best fit or if
another label option may have been overlooked. Scoring of their
responses was automated using the following rules: (1) if both
agreed with the first degree label, it was kept; (2) if both agreed
with the second degree label, the final label was switched; (3) if the
first degree label was not “reject” and one accepted while the other
rejected, the first degree label was kept. On the rare occasion when
none of these conditions were met, the final reviewer decided the
label selection based on the feedback.

The results of the final review (i.e., entries labeled as biased)
were merged with the source dataset (i.e., non-biased entries) to
comprise the training and testing datasets for modeling.

Models

To determine whether a tool can classify software artifacts as
containing indicators of bias, we developed text classification
models using spaCy. Binary and multi-class models were con-
sidered, where binary models were concerned with identifying the
presence or absence of biased language and multi-class models
concerned with identifying the type of bias present (if one is
present at all). Anticipating that the class distributions would be
highly imbalanced towards not containing bias, we implemented
down sampling by taking the mean of the quantity of data
present across each label type to improve model training. This
method was randomized, with ten models trained on different data
distributions.

Focusing on the ability of the trained models to perform
on different codebases, we prioritized evaluating the models
independently trained on the two internal commit datasets and
applied each to the Code Smell dataset (i.e., as a test dataset).
As a secondary task, we then combined the internal commits in a
single training set and applied them to Code Smell. Additionally,
to determine if commit messages can predict bias in comments,

Fig. 2: Overview of the spaCy NLP modeling workflow, broken up
into initialization (green) and execution (blue) task phases.

we trained a model on the internal commits and tested against
comments for the same project. Finally, we evaluate the combined
internal dataset against Code Smell.

We ran each model three times, each time using a different split
of the dataset. This modeling process is illustrated in Figure 2. For
each model, we report the mean F1 score and standard deviation
across runs. We swept across three model hyperparameters during
training:

1) The maximum number of samples used to train: This
mitigates the impact of label imbalance, by limiting the
total number of entries from each category before training
the model. The considered caps included:

1. The quantity of entries from all biases.
2. The mean of the quantity of data from each

category, including data which was not biased.
3. The quantity of entries from the largest bias

category.
4. No capacity, use all data.

2) Dropout: This is the percentage of connections which
are dropped from the neural network component of the
ensemble learning and is used to prevent over-fitting.
Typical sweep values are 20%, 40%, and 60%.

3) The size of the training batches and their compound-
ing rate at each epoch: This determines how much data
is passed to the trainer at each iteration from a minimum
(batch start size) to a maximum (batch stop size) with a
given rate of growth (compounding rate). For all models,
the compounding rate was left at the spaCy recommended
value of 1.001.

Results and Discussion

In this section we discuss the results of data annotation and the
classifier models. Statistics about the annotated data including
the final label distributions and interrater reliability are presented.
Model hyperparameters are presented and discussed with respect
to their mean F1 scores and standard deviations.



PROGRAMMATICALLY IDENTIFYING COGNITIVE BIASES PRESENT IN SOFTWARE DEVELOPMENT 97

Dataset Total
Items

Duplicate
Items

Final Item
Count Reviewers

Code Smell
Commits 471 30 441 5

Project A
Commits 1536 131 1405 6

Project B
Commits 238 11 227 5

Project B
Comments 469 0 469 5

Project B
Docstrings 181 0 181 5

TABLE 1: Overview of the five datasets, including: (1) counts of
original entries, (2) duplicate entries, excluding first occurrence, (3)
final entry count with duplicates removed, and (4) number of reviewers
that annotated each dataset.

Dataset Answer Annotation Sub
Annotation Bias

Code Smell
Commits 0.85 ± 0.23 0.83 ± 0.28 0.44 ± 0.19 0.22 ± 0.35

Project A
Commits 0.86 ± 0.21 0.87 ± 0.24 0.50 ± 0.20 0.39 ± 0.40

Project B
Commits 0.78 ± 0.24 0.89 ± 0.24 0.43 ± 0.21 0.35 ± 0.38

Project B
Comments 0.91 ± 0.19 0.92 ± 0.20 0.51 ± 0.17 0.43 ± 0.48

Project B
Docstrings 0.95 ± 0.15 0.94 ± 0.16 0.51 ± 0.15 0.42 ± 0.49

TABLE 2: Interrater reliability across the annotated datasets as
percentages, with a +/- standard deviation. "Answer" refers to the
annotation response type (i.e., accept, reject, ignore). "Annotation"
considers the specific bias label, where reject/ignore are empty
strings. "Sub-Annotation" considers the subset of entries in which
at least one reviewer selected a bias label. "Bias" compares only the
bias labels selected by reviewers (i.e., reject/ignore responses are not
considered). Reviewers typically agree on whether an entry is biased,
but not on the bias type.

Annotated Datasets

An overview of the four datasets in terms of total number of items,
number of duplicate entries, final number of items after accounting
for duplicates, and number of reviewers to annotate is provided in
Table 1.

To quantify variance in interpretation of bias presentation in
software commit messages and comments, interrater reliability
was computed based on percent agreement across reviewers.
Percent agreement is computed as the number of matching pairs
over the number of total possible pairs.

For answer reliability, the number of matching answer pairs

Dataset Total
Items

Rejected
(Not Biased)

Accepted
(Biased)

Ignored
(Excluded)

Code Smell
Commits 441 389 51 1

Project A
Commits 1,405 1,154 162 89

Project B
Commits 227 140 26 61

Project B
Comments 469 430 27 12

Project B
Docstrings 181 174 7 0

TABLE 3: Overview of the finalized annotations for each dataset. En-
tries labeled as "ignore" are excluded from the datasets for subsequent
modeling.

(i.e., “accept”, “reject”, or “ignore”) is divided by the total number
of possible pairs. For label reliability, we start with the high-level
measure of all label options, including the empty label string that
results from selection of “reject” or “ignore”. We refer to this
measure as annotation reliability, as it accounts for a combination
of answer and label selection, though at the cost of instances of
“reject” and “ignore” being indistinguishable. Given the expected
imbalance of bias versus non-biased entries, we also provide an
average of the reliability scores for the subset in which at least one
bias label is selected. We refer to this measure as sub-annotation
reliability. Lastly, we compute a bias reliability measure in which
we compare only the label options available when a reviewer
“accepts” an entry as biased.

There were six reviewers for the Project A Commits dataset
and five reviewers for all other datasets. Interrater reliability was
computed across reviewer annotations and are summarized in
Table 2. The distributions of bias labels for each dataset are
represented in Figure 3. Overall, reliability measures ranged from
0.78 to 0.91 for answers, 0.83 to 0.92 for annotations, 0.43 to 0.51
for sub-annotations, and 0.22 to 0.43 for bias labels across the four
datasets. An overview of the final annotation labels is provided in
Table 3.

Given the nature of the data being annotated, we expected a
significant amount of variance in how reviewers interpret commit
messages and in-source comments, especially without additional
context about the relevant code. This was confirmed with the
interrater reliability for top-level answers averaging to 85% agree-
ment, while reliability on bias type averaged to 35%. However, we
didn’t expect the level of disagreement to be so high, especially
when reviewing the label distributions by reviewer. For example,
some reviewers used "Other" or selected multiple labels at a much
greater rate than others. This may have resulted from the reviewers
being unclear on what specific bias was present.

Further, the overall distribution of biased versus not biased
entries by dataset supports that artifact types (e.g., comment,
commit) are used differently. For example, both comments and
docstrings tend to be more technical in nature, with comments
typically reflecting procedural knowledge and docstrings describ-
ing the purpose, inputs, and outputs of a class or function. This
is reflected by all three commit message datasets having approxi-
mately 12% of messages flagged as biased, while comments and
docstrings only had 6% and 4% biased entries, respectively.

Modeling

Table 4 summarizes the results for each model, along with the
best-performing hyperparameters as determined by a parameter
sweep. The mean and standard deviation of F1 Scores are com-
puted across three randomized train/test splits within the same
dataset.

No models were trained using the dataset comprised of doc-
strings due to the extreme imbalance in labels (i.e., <5% labeled
as bias). The docstring dataset had a total of 7 (of 181) entries
labeled as biased. This may be attributed to the inherit technical
nature of docstrings, combined with the low quantity of docstrings
collected during data curation.

The multi-label model (F1 = 72.1%) did not meet expectations
because it consistently predicted that no bias was typically present.
This model was over-fit given that the biased entries were now
split among four separate bias labels, increasing the level of
imbalance. Though this finding may be due to insufficient training
data availability, it’s interesting to note that interrater reliability



98 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Fig. 3: Distribution of bias labels per dataset. The first five plots show
the distribution of label counts by each reviewer and the finalized
review process. The last plot shows the finalized distribution of labels
as percentages to standardize visualization across all datasets. The
final plot reflects the data used for modeling.

Dataset Model
Type

Max
Samples

Drop
Rate

Batch
Range

Mean
F1

Std.
Dev.

Project A
Commits Binary 220 40% 4-64 81.2% 2.6%

Project B
Commits Binary 28 20% 8-64 65.9% 14.0%

Project A +
B Commits Binary 247 20% 4-64 79.0% 5.1%

Project A +
B Commits

Multi
Label 188 20% 8-32 72.1% 5.8%

Project B
Commits +
Comments

Binary 104 40% 8-32 78.6% 6.8%

All Internal
Data Binary 324 40% 8-64 82.3% 3.9%

TABLE 4: Hyperparameters selected and corresponding results for
each model. Model Type refers to whether the model predicted Bias
vs. No Bias (Binary) or the particular bias types (Multi-Label). "Max
Samples" refers to the maximum number of samples allowed for each
bias category, to prevent over-fitting given data imbalance. "Drop
Rate" and "Batch Range" are hyperparameters for the NLP model.
"Mean F1" and "Std. Dev" refer to the model results across three
randomized train/test splits within the same dataset.

follows a similar pattern when defining a specific bias label. The
confusion matrices from each of the three instances of this model
is Figure 4.

All binary classification models performed in parity with one
another, with mean F1 scores ranging from 78.6% to 82.3%. These
models performed better than the multi-label models given less
data imbalance between the binary categories (i.e., bias vs. no
bias). The model trained on Project B Commits data was the
only exception, which performed at 65.9%, most likely due to
the significantly smaller size of the training dataset.

The best performing model (F1 = 82.3%) was trained using the
largest dataset (i.e., the combined commit messages and comments
for both Projects A and B) as a binary classification model. The
confusion matrices of the three instances of this model is in Figure
5.

Conclusions and Implications

Through this project, two well-curated datasets were generated:
one derived from the commit messages of Projects A and B
and the other created by labeling an existing collection of code
refactoring-related commit messages from various free and open-
source software projects6. This data is valuable not only because
it is the first of its kind, but also because it is representative
of technical artifacts generated during the software development
process.

The level of variability in bias annotations across reviewers
emphasizes the difficulty in discerning whether a statement is
biased without insight of the surrounding context. This is fur-
ther exacerbated when it comes to identifying the type of bias.
Furthermore, limiting reviewers to a single annotation per entry
may alleviate the risk of reviewers selecting multiple labels when
uncertain. Our interrater reliability inherently resulted in lower
scores for multi-label annotations. For example, [’ANCHOR-
ING,HYPERBOLIC’] and [’HYPERBOLIC’] results in bias re-
liability of zero even though both reviewers thought hyperbolic
discounting was present. The level of variation may also arise from
individual differences in writing commit messages and comments;
messages that are longer or enumerate each change made are
more likely to elicit language suggestive of bias compared to



PROGRAMMATICALLY IDENTIFYING COGNITIVE BIASES PRESENT IN SOFTWARE DEVELOPMENT 99

Fig. 4: Confusion matrices for the multi-label model on "Project A + B Commits". Each matrix is an instance of a model run on a randomized
split of the data. All three exemplify over-fitting to the "no bias", attributable to data imbalance. This pattern also mirrors the low interrater
reliability scores for specific bias labels.

Fig. 5: Confusion matrices for the binary model on "All Internal Data". Each matrix is an instance of a model run on a randomized split of the
data. This model performed the best overall, attributable to the larger dataset size and reduced data imbalance compared to the other models.

highly concise messages. Properly identifying bias in software
artifacts may require consideration for informing software teams
on message structuring for consistency and utility.

Possible follow-on efforts to this study will investigate further
ways to improve multi-label modeling of bias. The multi-label
model was over-trained due to the significant quantity of non-
biased data versus the other four categories of bias. This differs
from the binary models, which had the advantage of being able
to combine those four bias categories together, resulting in a
more balanced dataset. Obtaining more data, specifically of entries
which are biased, will likely improve model robustness for both
the binary and multi-label models.

While data quantity remains an issue, we also note some
disagreement in data labels, reflected in the interrater reliability
(Table 2). It was not surprising to see the multi-label model
struggle to select the correct bias label, as the annotators tended to
disagree on which biases were present in specific data points. We
had a process to select a single bias label for each entry from the
pool of bias labels that the annotators independently selected. It is
possible that our model actually agreed with one of the bias labels

that an annotator voted on, but was rejected or changed during
the final review label review. A follow-on effort to this study will
better measure the multi-label model’s performance against the
pool of bias labels candidates, rather than the single entry selected
during annotation review.

Future research efforts that can build on these results include
the generation of datasets and models that consider the impact of
individual words or short phrases on bias classification, application
of a bias detection tool in tracing the source of a significant failure
to the engineering process (as opposed to a particular line of code),
and investigation of the impact of cognitive bias on code quality
metrics. Additionally, larger datasets, especially ones containing
in-code comments and document strings, are necessary to quantify
the impact of cognitive biases on the quality of finished software
systems. In the future, larger projects may require the development
of post-mortem reports to identify which aspects of the research,
design, and development cycles are most impactful to overall
project success or failure. With such data available researchers
can begin to answer the central question regarding the impact of
individual biases from a holistic perspective.



100 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Acknowledgements

We thank Michael Krein, Lisa Baraniecki, and Owen Gift for their
contributions to annotating the datasets used in this effort.

1. M. Delgado-Rodriguez and J. Llorca, Bias, Journal of Epidemiology &
Community Health, 58(8):635-641, 2004.

2. R. Mohanani, I. Salman, B. Turhan, P. Rodríguez and P. Ralph, Cognitive
biases in software engineering: a systematic mapping study, IEEE Transactions
on Software Engineering, 2018.

3. W. Stacy and J. MacMillan, Cognitive bias in software engineering,
Communications of the ACM, 38(6):57-63, 1995.

4. G. Calikli and A. Bener, Empirical analysis of factors affecting confir-
mation bias levels of software engineers, Software Quality Journal, 23(4):695-
722, 2015.

5. K. Mohan and R. Jain, Using traceability to mitigate cognitive biases in
software development, Communications of the ACM, 51(9):110-114, 2008.

6. E. AlOmar, M. W. Mkaouer and A. Ouni, Can refactoring be self-
affirmed? an exploratory study on how developers document their refactoring
activities in commit messages, IEEE, no. 2019 IEEE/ACM 3rd International
Workshop on Refactoring (IWoR), 2019.


	Introduction
	Research Methods
	Data Curation
	Bias Annotation: Prodigy Setup
	Bias Annotation: Manual Annotation
	Bias Annotation: Finalizing Bias Labels
	Models

	Results and Discussion
	Annotated Datasets
	Modeling

	Conclusions and Implications
	Acknowledgements

